تصور کنید که در حال حرکت در طول یک خیابان هستید و در حال تحمل گرما و نور شدید خورشید ناگهان آسمان تاریک می شود و شما برای مدت کوتاهی احساس راحتی می کنید و سپس دوباره نور خورشید بر شما می تابد. شاید از کنار این اتفاق به آسانی بگذرید اما اگر بدانید عاملی که باعث این اتفاق شده است سایه ماه بوده و شما آن قدر خوش شانس بوده اید که به طور اتفاقی در امتداد نوار بسیار باریک سایه ماه بوده اید شاید این اتفاق برای شما طور دیگری جلوه کند.
همانطور که می دانید مدار ماه به گرد زمین اندکی با صفحه زمین خورشید زاویه دارد و این امر باعث می شود که ما هر ماه شاهد خورشید گرفتگی نباشیم. خورشید گرفتگی زمانی اتفاق می افتد که ماه در بین زمین و خورشید قرار گیرد و سایه خود را بر زمین بیافکند. اما این اتفاق زمانی به وقوع می پیوندد که ماه تقریبا نزدیک یکی از گره های مداری خود باشد (گره های مداری نقاطی هستند که در آن مدار یک جسم مدار جسم دیگری را قطع می کند.) زیرا هنگامی که ماه در نزدیکی گره های خود باشد تقریبا بر صفحه زمین خورشید منطبق می شود و بنابراین این امکان وجود دارد تا سایه خود را بر زمین بیافکند و عده ای از علاقه مندان را از خانه هایشان بیرون بکشد.
کسوف ها به سه شکل اصلی اتفاق می افتد. نوع اول آن کسوف حلقوی است. همانطور که می دانید مدار ماه بیضوی است و طبعا گاهی اوقات در اوج (دورترین فاصله از زمین) و گاهی اوقات در حضیض (نزدیکترین فاصله از زمین) به سر می برد. اگر هنگام کسوف ماه در اوج مداری خود باشد اندازه زاویهای آن، آنگونه که از زمین دیده میشود، در مقایسه با اندازه زاویه ای خورشید کمتر می شود و بدین ترتیب ماه نمی تواند همه قرص خورشید را در پشت خود مخفی سازد. بدین ترتیب خورشید در میانه گرفت به صورت حلقه ای نورانی دیده می شود و این خود یکی از جاذبه های این نوع کسوف است. کسوف 11 مهر ماه در بخشهایی از اسپانیا و آفریقا بدین صورت دیده می شود.
پیدایش فیزیک نوین
تا اواخر قرن نوزده قوانین حرکت نیوتن بر دنیای مکانیک حکومت میکرد و به عنوان پایههای مکانیک کلاسیک بودند. همچنین تا این زمان تبدیلات گالیله به عنوان بهترین الگو جهت تبدیل مختصات به شمار می رفت. بر اساس این تبدیلات سرعت نور مقداری ثابت میشود و با حرکت ناظر تغییر میکرد. تا اینکه آلبرت انیشتین نظریه نسبیت را ارائه داد و دنیای فیزیک را متحول ساخت. در این زمان آزمایشهای زیادی برای اندازه گیری سرعت نور انجام شد و دانشمندان به این نتیجه رسیدند که سرعت نور مستقل ار حرکت چارچوبهای مرجع مقداری ثابت است. به این ترتیب فیزیک نوین بصورت رسمی پایه ریزی شد. در حالت کلی میتوان گفت که فیزیک نوین در مورد اصول فیزیک قرن بیستم به صورت نسبتا دقیق و در عین حال در یک سطح بنیادی بحث میکند.پایستگی جرم
برخلاف آنچه در مکانیک کلاسیک تصور میشد ، در فیزیک نوین جرم یک جسم کمیتی تغییر ناپذیر نیست ، بلکه با بالا رفتن سرعت افزایش پیدا میکند. بدین ترتیب است که وقتی سرعت یک جسم به سرعت نور (C=3X108m/s) نزدیک میشود، جرم آن به سوی بینهایت میل میکند. پس سرعت نور معرف حدی است که تجاوز از آن را نمیتوان انتظار داشت. لازم به یادآوری است که غیر از مورد سرعتهای بیشتر از 0.1 سرعت نور ، این تصحیح جرم محسوس نیست. از طرف دیگر ، قبول میکنیم که جرم و انرژی میتوانند متقابلا به یکدیگر تبدیل شوند. بدین جهت است که در فروپاشیهای اتمی چنانکه میدانیم ، انرژی قابل ملاحظه ای تولید میشود. مجموع جرمهای اجسام حاصل همیشه کمتر از جرم جسم خرد شده است. با استفاده از فرمول آلبرت انیشتین میتوان انرژی آزاد شده را محاسبه کرد.E=mC2 |
بنابراین ، بجای پایستگی جرم در حالت کلاسیک ، پایستگی جرم و انرژی قرار میگیرد. به عبارت دیگر هرگاه جرم تغییر کند آن تغییر به وسیله تغییر انرژی جبران میشود. و لذا انرژی و جرم را میتوان به یکدیگر تبدیل کرد.
پایستگی زمان
برخلاف فیزیک کلاسیک ، در فیزیک نوین زمان یک کمیت ثابت و پایا نیست و بلکه به حرکت چارچوبهای مرجع بستگی دارد و با بالا رفتن سرعت طولانیتر میگویند. از این مسئله تحت عنوان پدیده اتساع زمان در فیزیک نوین یاد میشود.T=T0/√1-(v/c)2 |
پدیده اتساع زمان به مسائل بسیار جالبی مانند پاردوکس دو قلوها منجر میشود. به عبارت دیگر ، اگر دو برادر دو قلو را در نظر بگیریم که در یک لحظه در روی زمین متولد میشوند ، آنگاه یکی از این دو برادر بوسیله سفینهای که با سرعتی نزدیک به سرعت نور حرکت میکند به طرف کره ماه برود ، در اینصورت بعد از گذشت مدت زمانی ، فاصله سنی که دو برادر از یکدیگر دارند متفاوت خواهد بود.
لازم به ذکر است که در حد V<
پایستگی طول
در فیزیک نوین فضا نیز مطلق بودن خود را از دست داده و به یک کمیت نسبی تبدیل میشود که به سرعت ناظرها بستگی دارد. این پدیده نیز به عنوان انقباض فضا معروف است. رابطهای که انقباض فضا بر حسب آن بیان میشود ، به صورت زیر است.L=L0x√1-(v/c)2 |
بر اساس رابطه فوق اگر سرعت افزایش پیدا کند ، طول کوتاهتر میشود.
جرم فوتون
ملاحظه کردیم که در فیزیک نوین جرم بر اساس رابطه m=m0/√1-(v/c)2 تغییر میکند. بنابراین در مورد فوتون که دارای سرعت C میباشد ، مقدار بینهایت برای جرم فوتون حاصل میگردد. برای احتزار از این مسئله جرم سکون فوتون (m0) را برای صفر فرض میشود.پایستگی تکانه
میدانیم که در فیزیک کلاسیک تکانه بر حسب رابطه P=mv بیان میشود. از طرف دیگر گفتیم که جرم پایسته نبوده و بسته به سرعت ناظرها تغییر میکند. بنابراین تکانه که یک کمیت پایسته در فیزیک کلاسیک است ، پایستگی خود را از دست میدهد. همچنین دیدیم که طبق رابطه آلبرت انیشتین تغییر در جرم با تغییر در انرژی جبران میشود. بنابراین ، بجای کمیت پایسته تکانه فیزیک کلاسیک ، در فیزیک نوین کمیت دیگری بنام اندازه حرکت-انرژی معرفی میشود. این کمیت همواره مقداری پایسته خواهد بود که براساس رابطه زیر بیان می شود.E2=E20+(pc)2 |
معادله فوق یک رابطه اساسی در دینامیک نسبیتی میباشد. چون در فضای سه بعدی اندازه حرکت (تکانه) دارای سه مولفه است. رابطه فوق به عنوان چهار بردار اندازه حرکت - انرژی معروف است.
چهار بردار فضا-زمان
ملاحظه کردیم که در فیزیک نوین رابطه پایسته جدیدی به نام اندازه حرکت-انرژی حاصل شد. همچنین بجای پایستگی جداگانه فضایی و پایستگی زمانی فیزیک کلاسیک ، در فیزیک نوین زمان و فضا به یکدیگر وابسته گشته و یک کمیت پایسته به عنوان چهار بردار فضا-زمان بوجود میآید.سخن آخر
آنچه اشاره شد در واقع مفاهیم اولیهای هستند که برای ورود به فیزیک نوین لازم است. یعنی باید ابتدا در نگرش کلاسیکی خود تغییراتی اعمال کنیم و سپس وارد فیزیک نوین شویم. بعد از اینکه خود را به این اطلاعات اولیه تجهیز کردیم ، به راحتی میتوانیم پدیدههایی چون پدیده فوتوالکتریک ، اثر کامپتون ، تولیدزوج و نابودی زوج ، تولید اشعه ایکس و موارد دیگر را به راحتی تغییر کنیم.مسئله دیگری که در فیزیک نوین مورد مطالعه قرار می گیرد ، مطالعه ساختار اتمی مواد ، برهمکنش فوتون با ماده و واکنش های هستهای با استفاده از مفاهیم اولیه فیزیک نوین بحث میشود.
درون هر اتم می توان سه ذره ریز پیدا کرد: پروتون، نوترون و الکترون.
پروتونها در کنار هم قرار می گیرند و هسته اتم را تشکیل می دهند، در حالی که الکترونها به دور هسته می چرخند. پروتون بار الکتریکی مثبت و الکترون بار الکتریکی منفی دارد و از آنجا که بارهای مخالف ، یکدیگر را جذب می کنند، پروتون و الکترون هم یکدیگر را جذب می کنند و همین نیرو، سبب پایدار ماندن الکترونها در حرکت به دور هسته می گردد. در اغلب حالت ها تعداد پروتونها و الکترونهای درون اتم یکسان است، بنابراین اتم درحالت عادی و طبیعی خنثی است.
نوترون، بار خنثی دارد و وظیفه اش در هسته، کنار هم نگاه داشتن پروتونهای هم بار است.می دانیم که ذرات با بار یکسان یکدیگر را دفع می کنند .در نتیجه وظیفه نوترونها این است که با فراهم آوردن شرایط بهتر، پروتونها را کنار هم نگاه دارند. ( این کار توسط نیروی هسته ای قوی صورت می گیرد )
تعداد پروتونهای هسته نوع اتم را مشخص می کند. برای مثال اگر 13 پروتون و 14 نوترون، یک هسته را تشکیل دهند و 13 الکترون هم به دور آن بچرخند، یک اتم آلومینیوم خواهید داشت و اگر یک میلیون میلیارد میلیارد اتم آلومینیوم را در کنار هم قرار دهید، آنگاه نزدیک به پنجاه گرم آلومینیوم خواهید داشت! همه آلومینیوم هایی که در طبیعت یافت می شوند، AL27 یا آلومینیوم 27 نامیده می شوند. عدد 27 نشان دهنده جرم اتمی است که مجموع تعداد پروتونها و نوترونهای هسته را نشان می دهد.
اگر یک اتم آلومینیوم را درون یک بطری قرار دهید و میلیونها سال بعد برگردید، باز هم همان اتم آلومینیوم را خواهید یافت. بنابراین آلومینیوم 27 یک اتم پایدار نامیده می شود.
بسیاری از اتمها در شکل های مختلفی وجود دارند. مثلاً مس دو شکل دارد: مس 63 که 70 درصد کل مس موجود در طبیعت است و مس 65 که 30 درصد بقیه را تشکیل می دهد. شکل های مختلف اتم، ایزوتوپ نامیده می شوند. هر دو اتم مس 63 و مس 65 دارای 29 پروتون هستند، ولی مس 63 دارای 34 نوترون و مس 65 دارای 36 نوترون است. هر دو ایزوتوپ خصوصیات یکسانی دارند و هر دو هم پایدارند.
اتمهای ناپایدار
تا اوایل قرن بیستم، تصور می شد تمامی اتم ها پایدار هستند، اما با کشف خاصیت پرتوزایی اورانیوم توسط بکرل مشخص شد برخی عناصر خاص دارای ایزوتوپ های رادیواکتیو هستند و برخی دیگر، تمام ایزوتوپ هایشان رادیواکتیو است. رادیواکتیو بدان معنی است که هسته اتم از خود تشعشع ساطع می کند.
هیدورژن مثال خوبی از عنصری است که ایزوتوپ های متعددی دارد و فقط یکی از آنها رادیو اکتیو است. هیدروژن طبیعی ( همان هیدروژنی که ما می شناسیم) در هسته خود دارای یک پروتون است و هیچ نوترونی ندارد. ( البته چون فقط یک پروتون درهسته وجود دارد نیازی به نوترون نیست ) ایزوتوپ دیگر هیدروژن، هیدروژن 2 یا دو تریوم است که یک پروتون و یک نوترون در هسته خود جای داده است. دوتریوم، فقط 015/0 درصد کل هیدروژن را تشکیل می دهد و در طبیعت بسیار کمیاب است، با این حال مانند هیدورژن طبیعی رفتار می کند. البته از یک جهت با آن تفاوت دارد و آن، سمی بودن دوتریوم در غلظت های بالاست. دوتریوم هم ایزوتوپ پایداری است، ولی ایزوتوپ بعدی که تریتیوم خوانده می شود، ناپایدار است. تریتیوم که هیدروژن 3 نیز خوانده می شود، در هسته خود یک پروتون و دو نوترون دارد و طی یک واپاشی رادیواکتیو به هلیوم 3 تبدیل می شود. این بدان معنی است که اگر ظرفی پر از تریتیوم داشته باشید و آن را بگذارید و یک میلیون سال بعد برگردید، ظرف شما پر از هلیوم 3 است. هلیوم 3 از 2 پروتون و یک نوترون ساخته شده وعنصری پایدار است ).
در برخی عناصر مشخص، به طور طبیعی همه ایزوتوپ ها رادیواکتیو هستند. اورانیوم بهترین مثال برای چنین عناصری است که علاوه بر رادیواکتیویته زیاد سنگین ترین عنصر رادیواکتیو هم هست که به طور طبیعی یافت می شود. علاوه بر آن، هشت عنصر رادیواکتیو طبیعی هم وجود دارند که عبارتند از پولوتونیوم، استاتین، رادون، فرانسیم، رادیوم، اکتینیوم، توریم و پروتاکتسینانیوم. عناصر سنگین تر از اورانیوم که به دست بشر در آزمایشگاه ساخته شده اند، همگی رادیواکتیو هستند.
واپاشی رادیو اکتیو
وحشت نکنید بر خلاف اسمش این فرایند بسیار ساده است! اتم یک ایزوتوپ رادیواکتیو طی یک واکنش خودبخودی به یک عنصر دیگر تبدیل می شود. این واپاشی معمولاً از سه راه زیر انجام می شود:
1- واپاشی آلفا
2- واپاشی بتا
3- شکافت خودبه خودی
توضیح تفاوت این سه راه کمی مشکل است اما بدون اینکه بدانید این سه راه چه فرقی با هم می کنند هم می توانید از ادامه مطلب سر در آورید!! اگر خیلی هم علاقمندید بدانید اینجا را کلیک کنید.
در این فرآیندها چهار نوع تابش رادیواکتیو مختلف تولید می شود:
1- پرتو آلفا
2- پرتو بتا
3- پرتو گاما
4- پرتوهای نوترون
باز هم برای اینکه بدانید چگونه ، اینجا را بخوانید!
تابش های طبیعی خطرناک
درست است که واپاشی رادیواکتیو، یک فرآیند طبیعی است و عناصر رادیواکتیو هم بخشی از طبیعت هستند، ولی این تابش های رادیواکتیو برای موجودات زنده زیان بار هستند. ذرات پر انرژی آلفا، بتا، نوترونها، پرتوهای گاما و پرتوهای کیهانی، همگی به تابش های یون ساز معروفند، بدین معنی که بر همکنش آنها با اتم ها منجر به جداسازی الکترون ها از لایه ظرفیتشان می شود. از دست دادن الکترونها، مشکلات زیادی از جمله مرگ سلول ها و جهش های ژنتیکی را برای موجودات زنده به دنبال دارد. جالب است بدانید جهش ژنتیکی عامل بروز سرطان است.
درات آلفا، اندازه بزرگتری دارند و از این رو توانایی نفوذ زیادی در مواد ندارند، مثلاً حتی نمی توانند از یک ورق کاغذ عبور کنند. از این رو تا زمانی که در خارج بدن هستند تأثیری روی افراد ندارند. ولی اگر مواد غذایی آلوده به مواد تابنده ذرات آلفا بخورید، این ذرات می توانند آسیب مختصری درون بدن ایجاد کنند.
ذرات بتا توانایی نفوذ بیشتری دارند که البته آن هم خیلی زیاد نیست، ولی در صورت خورده شدن خطر بسیار بیشتری دارند. ذرات بتا را می توان با یک ورقه فویل آلومینویم یا پلکسی گلاس متوقف کرد.
پرتوهای گاما همانند اشعه X فقط با لایه های ضخیم سربی متوقف می شوند. نوترونها هم به دلیلی بی یار بودن، قدرت نفوذ بسیار بالایی دارند و فقط با لایه های بسیار ضخیم بتن یا مایعاتی چون آب و نفت متوقف می شوند. پرتوهای گاما و پرتوهای نوترون به دلیل همین قدرت نفوذ بالا می توانند اثرات بسیار وخیمی بر سلول های موجودات زنده بگذارند، تأثیراتی که گاه تا چند نسل ادامه خواهد داشت.
پس چه کار می شود کرد؟
با توجه به همه چیزهایی که گفتیم ، کنترل و استفاده درست از انرژی هسته ای بیشترین اهمیت را دارد. باید بدانیم چه کارهایی از این انرژی بر می آید و چه کارهایی فقط در تصورات ماست تا با آگاهی بیشتر از آن استفاده کنیم. خوب اول خوبهایش را بگوییم یا بدهایش را ؟
ليست كل يادداشت هاي اين وبلاگ