Well Com To SamaD Blog
شنبه 86 مهر 7 , ساعت 9:53 عصر



<

Pacman

Pacman 


چهارشنبه 86 مهر 4 , ساعت 8:46 عصر

ناصر خسرو قبایانی


چهارشنبه 86 مهر 4 , ساعت 6:54 عصر
Abhijeet
Adnan Sami
Pankaj Udhas
Sajnaa
Sunidhi Chauhan
Shubha Mudgalt
Gulam Ali
Kunal Ganjawala
Lata
Mohammad Rafi
M Rafi & Asha Bhosli
Mukesh
Mukesh & Lata
Kishore Kumar
Kishor kumar & Asha Bhosli
Kishore Kumar & Lata
Lata & Mohammed Rafi
Nusrat Fateh Ali
Mehdi Hassan

 


چهارشنبه 86 مهر 4 , ساعت 6:45 عصر
Aram
Ice Boys
Afsaneh
Afshin
Omid
Andy
Bnyamin
Tara
Jalal Hemmati
Jahan
Hami
Homeyra
Delaram
Dani
Dj Maryam
Salar
Sepddeh
Sattar
Sandy
Suzan Roshan
Shahrokh
Shajarian
Sharareh
Shakila
Shahab Tiam
Shahram Shabpareh
Shahram Solati
Shahram Kashani
Shohreh
Shahala Sarshar
Sheila
Aref
Alireza Shahab
Ali Seif
Fattaanha
Faramarz Assef
Farzad Sadeghi
Farzanha
Farideh
Kamran & Hooman

چهارشنبه 86 مهر 4 , ساعت 5:45 عصر

کوچکترین شوالیه

روز برفی 

سرباز

ممکن بود اتفاق بیافتد

چوب زدن بر آب

مادر 

سنگ قیمتی

میخ در دیوار

 ضحاک ماردوش و فریدون_شاهنامه  

زال و سیمرغ _ شاهنامه

جنگ اسفندیار و رستم _شاهنامه 

خورشید و باد

راز شکست ناپذیری

 پسر ببر  

عیدی و جلسه سری 

بچه های سبز  

منجمّ

خرس شکار نشده 

بابا برقی و خانه های ایرانی 

مکتبخانه 

پیش گویی حوادث 

کلاه فروش 

رابین هود 

ستاره شناسی سگ 

خلیفه و حاکم 

هیزم شکن 

دزد و آرزو 

هر حرفی را نباید زد 

خبرچین 

هد هد 

ابوریحان بیرونی 

رستم و سهراب 

دوست 

صدای سگ 

انتخاب قاضی 

شغال عاقل 

یزدگرد اول 

مرد و نامرد 

نان و حلوا 

آخرین درس 

درخت بخشنده 

سه راهزن 

میرداماد 

خیال خام 

عیارجوانمرد 

پند مادر 


چهارشنبه 86 مهر 4 , ساعت 4:51 عصر

در جستجوی دایناسور

سیاره ی سرد

لوکوموتیو

دانه ی خوش شانس

مراقبت از سگ کوچولو

درخت آرزو

گرگی در لباس میش

 قورباغه و گاو نر

تکالیف مدرسه ی پاتریک

گنج دزد دریائی

دو موش بد

 چهار خرگوش کوچولو

چوپان دروغگو

 چشمه سحرآمیز

چه کسی کمک می کند؟

بانی خرگوشه و فیلم ترسناک

خرسی بنام وولستن کرافت

 اردک خوش شانس

راپونزل و موهای جادویی

جوجه اردک زشت

گردش لاک پشت ها

سفیدبرفی _ فلش

قورباغه ای بنام ... _ فلش با صدا

مرد ماهیگیر و همسرش

مامانم کجاست ؟ _ تصویری

پرنده مهربان _ تصویری

صدای عجیب  

شنل قرمزی  

قصه پول  

مورچه بی دقت 

سیندرلا 

یک روز بارانی 

گربه ی تنها

شبی در باغ وحش

خرگوش باهوش

دخترک کبریت فروش 

دوچرخه پیر ـ بازیافت زباله 

کیمیا ـ نفت 

بزبزک زنگوله پا 

هزارپا غوله 

کی از همه قویتره 

دو دوست 

کفشدوزک و دوستانش 

جوجه کوچولو 

سه قدم دورتر شد از مادر 

بره آوازخوان 

بادبادک بازی 

خر و گاو 

فینگیلی و جینگیلی 

بهترین بابای دنیا 

سلام یادتون نره 

سه بچه خوک 

مهمانهای ناخوانده 

گربه و روباه 

گرگ و الاغ 

صلح حیوانات 

سه ماهی 

کلاغ و روباه 

کدو قلقله زن 

مسواک موش موشک 


سه شنبه 86 مهر 3 , ساعت 4:45 عصر
چرا هرماه خورشید گرفتگی اتفاق نمی‌افتد؟ انواع خورشید گرفتگی‌ها چگونه هستند و چه‌طور می‌توان یک خورشید گرفتگی را بدون خطر رصد کرد؟

تلسکوپ

تصور کنید که در حال حرکت در طول یک خیابان هستید و در حال تحمل گرما و نور شدید خورشید ناگهان آسمان تاریک می شود و شما برای مدت کوتاهی احساس راحتی می کنید و سپس دوباره نور خورشید بر شما می تابد. شاید از کنار این اتفاق به آسانی بگذرید اما اگر بدانید عاملی که باعث این اتفاق شده است سایه ماه بوده و شما آن قدر خوش شانس بوده اید که به طور اتفاقی در امتداد نوار بسیار باریک سایه ماه بوده اید شاید این اتفاق برای شما طور دیگری جلوه کند.

همانطور که می دانید مدار ماه به گرد زمین اندکی با صفحه زمین خورشید زاویه دارد و این امر باعث می شود که ما هر ماه شاهد خورشید گرفتگی نباشیم. خورشید گرفتگی زمانی اتفاق می افتد که ماه در بین زمین و خورشید قرار گیرد و سایه خود را بر زمین بیافکند. اما این اتفاق زمانی به وقوع می پیوندد که ماه تقریبا نزدیک یکی از گره های مداری خود باشد (گره های مداری نقاطی هستند که در آن مدار یک جسم مدار جسم دیگری را قطع می کند.) زیرا هنگامی که ماه در نزدیکی گره های خود باشد تقریبا بر صفحه زمین خورشید منطبق می شود و بنابراین این امکان وجود دارد تا سایه خود را بر زمین بیافکند و عده ای از علاقه مندان را از خانه هایشان بیرون  بکشد.

کسوف ها به سه شکل اصلی اتفاق می افتد. نوع اول آن کسوف حلقوی است. همانطور که می دانید مدار ماه بیضوی است و طبعا گاهی اوقات در اوج (دورترین فاصله از زمین) و گاهی اوقات در حضیض (نزدیک‌ترین فاصله از زمین) به سر می برد. اگر هنگام کسوف ماه در اوج مداری خود باشد اندازه زاویه‌ای آن، آن‌گونه که از زمین دیده می‌شود، در مقایسه با اندازه زاویه ای خورشید کمتر می شود و بدین ترتیب ماه نمی تواند همه قرص خورشید را در پشت خود مخفی سازد. بدین ترتیب خورشید در میانه گرفت به صورت حلقه ای نورانی دیده می شود و این خود یکی از جاذبه های این نوع کسوف است. کسوف 11 مهر ماه در بخشهایی از اسپانیا و آفریقا بدین صورت دیده می شود.


سه شنبه 86 مهر 3 , ساعت 4:31 عصر

پیدایش فیزیک نوین

تا اواخر قرن نوزده قوانین حرکت نیوتن بر دنیای مکانیک حکومت میکرد و به عنوان پایه‌های مکانیک کلاسیک بودند. همچنین تا این زمان تبدیلات گالیله به عنوان بهترین الگو جهت تبدیل مختصات به شمار می رفت. بر اساس این تبدیلات سرعت نور مقداری ثابت می‌شود و با حرکت ناظر تغییر می‌کرد. تا اینکه آلبرت انیشتین نظریه نسبیت را ارائه داد و دنیای فیزیک را متحول ساخت. در این زمان آزمایشهای زیادی برای اندازه گیری سرعت نور انجام شد و دانشمندان به این نتیجه رسیدند که سرعت نور مستقل ار حرکت چارچوبهای مرجع مقداری ثابت است. به این ترتیب فیزیک نوین بصورت رسمی پایه ریزی شد. در حالت کلی می‌توان گفت که فیزیک نوین در مورد اصول فیزیک قرن بیستم به صورت نسبتا دقیق و در عین حال در یک سطح بنیادی بحث می‌کند.

پایستگی جرم

برخلاف آنچه در مکانیک کلاسیک تصور می‌شد ، در فیزیک نوین جرم یک جسم کمیتی تغییر ناپذیر نیست ، بلکه با بالا رفتن سرعت افزایش پیدا می‌کند. بدین ترتیب است که وقتی سرعت یک جسم به سرعت نور (C=3X108m/s) نزدیک می‌شود، جرم آن به سوی بینهایت میل می‌کند. پس سرعت نور معرف حدی است که تجاوز از آن را نمی‌توان انتظار داشت. لازم به یادآوری است که غیر از مورد سرعتهای بیشتر از 0.1 سرعت نور ، این تصحیح جرم محسوس نیست. از طرف دیگر ، قبول می‌کنیم که جرم و انرژی می‌‌توانند متقابلا به یکدیگر تبدیل شوند. بدین جهت است که در فروپاشیهای اتمی چنانکه می‌دانیم ، انرژی قابل ملاحظه ای تولید می‌شود. مجموع جرمهای اجسام حاصل همیشه کمتر از جرم جسم خرد شده است. با استفاده از فرمول آلبرت انیشتین می‌توان انرژی آزاد شده را محاسبه کرد.
E=mC2


بنابراین ، بجای پایستگی جرم در حالت کلاسیک ، پایستگی جرم و انرژی قرار می‌گیرد. به عبارت دیگر هرگاه جرم تغییر کند آن تغییر به وسیله تغییر انرژی جبران می‌شود. و لذا انرژی و جرم را می‌توان به یکدیگر تبدیل کرد.

پایستگی زمان

برخلاف فیزیک کلاسیک ، در فیزیک نوین زمان یک کمیت ثابت و پایا نیست و بلکه به حرکت چارچوبهای مرجع بستگی دارد و با بالا رفتن سرعت طولانیتر می‌گویند. از این مسئله تحت عنوان پدیده اتساع زمان در فیزیک نوین یاد می‌شود.
T=T0/√1-(v/c)2



پدیده اتساع زمان به مسائل بسیار جالبی مانند پاردوکس دو قلوها منجر می‌شود. به عبارت دیگر ، اگر دو برادر دو قلو را در نظر بگیریم که در یک لحظه در روی زمین متولد می‌شوند ، آنگاه یکی از این دو برادر بوسیله سفینهای که با سرعتی نزدیک به سرعت نور حرکت می‌کند به طرف کره ماه برود ، در اینصورت بعد از گذشت مدت زمانی ، فاصله سنی که دو برادر از یکدیگر دارند متفاوت خواهد بود.


img/daneshnameh_up/e/e5/p43.gif




لازم به ذکر است که در حد V<زمان نسبی در فیزیک نوین به زمان مطلق در فیزیک کلاسیک تحویل می‌شود. در تجربه‌های روزمره ، اجسامی را مشاهده می‌کنیم که با سرعتهای خیلی کوچکتر از سرعت نور در حرکت‌اند. بنابراین ، اثرهای نسبیتی برجسته‌ای که بوسیله تبدیلات لورنتس جسم می‌شوند ، به آسمانی قابل درک نیستند. این پدیده ها اغلب در واپاشیهای پرتوزا اعمال می‌شوند.

پایستگی طول

در فیزیک نوین فضا نیز مطلق بودن خود را از دست داده و به یک کمیت نسبی تبدیل می‌شود که به سرعت ناظرها بستگی دارد. این پدیده نیز به عنوان انقباض فضا معروف است. رابطهای که انقباض فضا بر حسب آن بیان می‌شود ، به صورت زیر است.
L=L0x√1-(v/c)2


بر اساس رابطه فوق اگر سرعت افزایش پیدا کند ، طول کوتاهتر می‌شود.

جرم فوتون

ملاحظه کردیم که در فیزیک نوین جرم بر اساس رابطه m=m0/√1-(v/c)2 تغییر می‌کند. بنابراین در مورد فوتون که دارای سرعت C می‌باشد ، مقدار بینهایت برای جرم فوتون حاصل می‌گردد. برای احتزار از این مسئله جرم سکون فوتون (m0) را برای صفر فرض می‌شود.

پایستگی تکانه

می‌دانیم که در فیزیک کلاسیک تکانه بر حسب رابطه P=mv بیان می‌شود. از طرف دیگر گفتیم که جرم پایسته نبوده و بسته به سرعت ناظرها تغییر می‌کند. بنابراین تکانه که یک کمیت پایسته در فیزیک کلاسیک است ، پایستگی خود را از دست می‌دهد. همچنین دیدیم که طبق رابطه آلبرت انیشتین تغییر در جرم با تغییر در انرژی جبران میشود. بنابراین ، بجای کمیت پایسته تکانه فیزیک کلاسیک ، در فیزیک نوین کمیت دیگری بنام اندازه حرکت-انرژی معرفی می‌شود. این کمیت همواره مقداری پایسته خواهد بود که براساس رابطه زیر بیان می شود.

E2=E20+(pc)2


معادله فوق یک رابطه اساسی در دینامیک نسبیتی می‌باشد. چون در فضای سه بعدی اندازه حرکت (تکانه) دارای سه مولفه است. رابطه فوق به عنوان چهار بردار اندازه حرکت - انرژی معروف است.

چهار بردار فضا-زمان

ملاحظه کردیم که در فیزیک نوین رابطه پایسته جدیدی به نام اندازه حرکت-انرژی حاصل شد. همچنین بجای پایستگی جداگانه فضایی و پایستگی زمانی فیزیک کلاسیک ، در فیزیک نوین زمان و فضا به یکدیگر وابسته گشته و یک کمیت پایسته به عنوان چهار بردار فضا-زمان بوجود می‌آید.

سخن آخر

آنچه اشاره شد در واقع مفاهیم اولیهای هستند که برای ورود به فیزیک نوین لازم است. یعنی باید ابتدا در نگرش کلاسیکی خود تغییراتی اعمال کنیم و سپس وارد فیزیک نوین شویم. بعد از اینکه خود را به این اطلاعات اولیه تجهیز کردیم ، به راحتی می‌توانیم پدیده‌هایی چون پدیده فوتوالکتریک ، اثر کامپتون ، تولیدزوج و نابودی زوج ، تولید اشعه ایکس و موارد دیگر را به راحتی تغییر کنیم.

مسئله دیگری که در فیزیک نوین مورد مطالعه قرار می گیرد ، مطالعه
ساختار اتمی مواد ، برهمکنش فوتون با ماده و واکنش های هسته‌ای با استفاده از مفاهیم اولیه فیزیک نوین بحث می‌شود.

سه شنبه 86 مهر 3 , ساعت 4:25 عصر
فیزیک هسته ای چیست؟
ذوالفقار دانشی

در جهان همه چیز از اتم ساخته شده است. اتمهای مختلف در کنار هم قرار می گیرند و مولکولهای مختلف را تشکیل می دهند. هر اتمی که در طبیعت پیدا می شود، یکی از 92 نوع اتمی است که به نام عناصر طبیعی شناخته شده اند؛ پس هر چه روی زمین وجود دارد، از فلز، پلاستیک،لباس، شیشه گرفته تا  مو و غیره، همه ترکیباتی از 92 عنصر طبیعی هستند. جدول تناوبی عناصر، فهرست عناصری است که می توان در طبیعت پیدا کرد به اضافه عناصری که به دست بشر ساخته شده است.


درون هر اتم می توان سه ذره ریز  پیدا کرد: پروتون، نوترون و الکترون.
پروتونها در کنار هم قرار می گیرند و هسته اتم را تشکیل می دهند، در حالی که الکترونها به دور هسته می چرخند. پروتون بار الکتریکی مثبت و الکترون بار الکتریکی منفی دارد و از آنجا که بارهای مخالف ، یکدیگر را جذب می کنند، پروتون و الکترون هم یکدیگر را جذب می کنند و همین نیرو، سبب پایدار ماندن الکترونها در حرکت به دور هسته می گردد. در اغلب حالت ها تعداد پروتونها و الکترونهای درون اتم یکسان است، بنابراین اتم درحالت عادی و طبیعی خنثی است.
نوترون، بار خنثی دارد و وظیفه اش در هسته، کنار هم نگاه داشتن پروتونهای هم بار است.می دانیم که ذرات با بار یکسان یکدیگر را دفع می کنند .در نتیجه وظیفه نوترونها این است که با فراهم آوردن شرایط بهتر، پروتونها را کنار هم نگاه دارند. ( این کار توسط نیروی هسته ای قوی صورت می گیرد )


تعداد پروتونهای هسته نوع اتم را مشخص می کند. برای مثال اگر 13 پروتون و 14 نوترون، یک هسته را تشکیل دهند و 13 الکترون هم به دور آن بچرخند، یک اتم آلومینیوم خواهید داشت و اگر یک میلیون میلیارد میلیارد اتم آلومینیوم را در کنار هم قرار دهید، آنگاه نزدیک به پنجاه گرم آلومینیوم خواهید داشت! همه آلومینیوم هایی که در طبیعت یافت می شوند، AL27  یا آلومینیوم 27 نامیده می شوند. عدد 27 نشان دهنده جرم اتمی است که مجموع تعداد پروتونها و نوترونهای هسته را نشان می دهد.
اگر یک اتم آلومینیوم را درون یک بطری قرار دهید و میلیونها سال بعد برگردید، باز هم همان اتم آلومینیوم را خواهید یافت. بنابراین آلومینیوم 27 یک اتم پایدار نامیده می شود.
بسیاری از اتمها در شکل های مختلفی وجود دارند. مثلاً مس دو شکل دارد: مس 63 که 70 درصد کل مس موجود در طبیعت است و مس 65 که 30 درصد بقیه را تشکیل می دهد. شکل های مختلف اتم، ایزوتوپ نامیده می شوند. هر دو اتم مس 63 و مس 65 دارای 29 پروتون هستند، ولی مس 63 دارای 34 نوترون و مس 65 دارای 36 نوترون است. هر دو ایزوتوپ خصوصیات یکسانی دارند و هر دو هم پایدارند.

اتمهای ناپایدار
تا اوایل قرن بیستم، تصور می شد تمامی اتم ها پایدار هستند، اما با کشف خاصیت پرتوزایی اورانیوم توسط بکرل مشخص شد برخی عناصر خاص دارای ایزوتوپ های رادیواکتیو هستند و برخی دیگر، تمام ایزوتوپ هایشان رادیواکتیو است. رادیواکتیو بدان معنی است که هسته اتم از خود تشعشع ساطع می کند.


هیدورژن مثال خوبی از عنصری است که ایزوتوپ های متعددی دارد و فقط یکی از آنها رادیو اکتیو است. هیدروژن طبیعی ( همان هیدروژنی که ما می شناسیم) در هسته خود دارای یک پروتون است و هیچ نوترونی ندارد. ( البته چون فقط یک پروتون درهسته وجود دارد نیازی به نوترون نیست ) ایزوتوپ دیگر هیدروژن، هیدروژن 2 یا دو تریوم است که یک پروتون و یک نوترون در هسته خود جای داده است. دوتریوم، فقط 015/0 درصد کل هیدروژن را تشکیل می دهد و در طبیعت بسیار کمیاب است، با این حال مانند هیدورژن طبیعی رفتار می کند. البته از یک جهت با آن تفاوت دارد و آن، سمی بودن دوتریوم در غلظت های بالاست. دوتریوم هم ایزوتوپ پایداری است، ولی ایزوتوپ بعدی که تریتیوم خوانده می شود، ناپایدار است. تریتیوم که هیدروژن 3 نیز خوانده می شود، در هسته خود یک پروتون و دو نوترون دارد و طی یک واپاشی رادیواکتیو به هلیوم 3 تبدیل می شود. این بدان معنی است که اگر ظرفی پر از تریتیوم داشته باشید و آن را بگذارید و یک میلیون سال بعد برگردید، ظرف شما پر از هلیوم 3 است. هلیوم 3 از 2 پروتون و یک نوترون ساخته شده وعنصری پایدار است ).


در برخی عناصر مشخص، به طور طبیعی همه ایزوتوپ ها رادیواکتیو هستند. اورانیوم بهترین مثال برای چنین عناصری است که علاوه بر رادیواکتیویته زیاد سنگین ترین عنصر رادیواکتیو هم هست که به طور طبیعی یافت می شود. علاوه بر آن، هشت عنصر رادیواکتیو طبیعی هم وجود دارند که عبارتند از پولوتونیوم، استاتین، رادون، فرانسیم، رادیوم، اکتینیوم، توریم و پروتاکتسینانیوم. عناصر سنگین تر از اورانیوم که به دست بشر در آزمایشگاه ساخته شده اند، همگی رادیواکتیو هستند.

واپاشی رادیو اکتیو
وحشت نکنید بر خلاف اسمش این فرایند بسیار ساده است! اتم یک ایزوتوپ رادیواکتیو طی یک واکنش خودبخودی به یک عنصر دیگر تبدیل می شود. این واپاشی معمولاً از سه راه زیر انجام می شود:
1- واپاشی آلفا
2- واپاشی بتا
3- شکافت خودبه خودی

توضیح تفاوت این سه راه کمی مشکل است اما بدون اینکه بدانید این سه راه چه فرقی با هم می کنند هم می توانید از ادامه مطلب سر در آورید!! اگر خیلی هم علاقمندید بدانید اینجا را کلیک کنید.

در این فرآیندها چهار نوع تابش رادیواکتیو مختلف تولید می شود:
1- پرتو آلفا
2- پرتو بتا
3- پرتو گاما
4- پرتوهای نوترون

 باز هم برای اینکه بدانید چگونه ، اینجا را بخوانید!



تابش های طبیعی خطرناک
درست است که واپاشی رادیواکتیو، یک فرآیند طبیعی است و عناصر رادیواکتیو هم بخشی از طبیعت هستند، ولی این تابش های رادیواکتیو برای موجودات زنده زیان بار هستند. ذرات پر انرژی آلفا، بتا، نوترونها، پرتوهای گاما و پرتوهای کیهانی، همگی به تابش های یون ساز معروفند، بدین معنی که بر همکنش آنها با اتم ها منجر به جداسازی الکترون ها از لایه ظرفیتشان می شود. از دست دادن الکترونها، مشکلات زیادی از جمله مرگ سلول ها و جهش های ژنتیکی را برای موجودات زنده به دنبال دارد. جالب است بدانید جهش ژنتیکی عامل بروز سرطان است.
درات آلفا، اندازه بزرگتری دارند و از این رو توانایی نفوذ زیادی در مواد ندارند، مثلاً حتی نمی توانند از یک ورق کاغذ عبور کنند. از این رو تا زمانی که در خارج بدن هستند تأثیری روی افراد ندارند. ولی اگر مواد غذایی آلوده به مواد تابنده ذرات آلفا بخورید، این ذرات می توانند آسیب مختصری درون بدن ایجاد کنند.
ذرات بتا توانایی نفوذ بیشتری دارند که البته آن هم خیلی زیاد نیست، ولی در صورت خورده شدن خطر بسیار بیشتری دارند. ذرات بتا را می توان با یک ورقه فویل آلومینویم یا پلکسی گلاس متوقف کرد.
پرتوهای گاما همانند اشعه X فقط با لایه های ضخیم سربی متوقف می شوند. نوترونها هم به دلیلی بی یار بودن، قدرت نفوذ بسیار بالایی دارند و فقط با لایه های بسیار ضخیم بتن یا مایعاتی چون آب و نفت متوقف می شوند. پرتوهای گاما و پرتوهای نوترون به دلیل همین قدرت نفوذ بالا می توانند اثرات بسیار وخیمی بر سلول های موجودات زنده بگذارند، تأثیراتی که گاه تا چند نسل ادامه خواهد داشت.


پس چه کار می شود کرد؟
با توجه به همه چیزهایی که گفتیم ، کنترل و استفاده درست از انرژی هسته ای بیشترین اهمیت را دارد. باید بدانیم چه کارهایی از این انرژی بر می آید و چه کارهایی فقط در تصورات ماست تا با آگاهی بیشتر از آن استفاده کنیم. خوب اول خوبهایش را بگوییم یا بدهایش را ؟


سه شنبه 86 مهر 3 , ساعت 4:18 عصر
فیزیک چیست ؟


زندگی بشر را چیزی جز مکانیزم حرکتی ( دینامیک) و الگوهای ثابت و بی حرکت(ایستاتیک) تشکیل نمی دهد.در ابتدای زندگی بشر امکان اکتشاف قوانین از لابلای حوادث زندگی روزمره او وجود نداشته است. شاید خود او نیز از حضور چنین قوانینی در زندگی اش که معیشت او را امکان پذیر ساخته بی خبر بوده است و هر رویداد و حادثه ای را امری طبیعی می پنداشت و هیچ وقت کشش و جاذبه ای برای کشف علت و معلول نداشته است.
فیزیک حقیقت علت و معلول جهان هستی را تشکیل می دهد. شاید در ابتدا با شنیدن لفظ ان مفاهیمی مانند مسائل پیچیده و یا قانون ساده گرانش زمین و سیب نیوتن در ذهن همگی تداعی شود. اما چنین نیست! دنیایست پیچیده از کلیه حوادثی که دانستن هر یک از انها زمینه ای برای شکر گذاری هر چه بیشتر خالق منان را فراهم می سازد.

شصت سال فیزیک

استاد دکتر محمود حسابی تنها شاگرد ایرانی پروفسور انیشتین بوده و در طول زندگی با دانشمندان طراز اول جهان نظیر شرودینگر- بورن- فرمی- دیراک- بور و... و با فلاسفه و ادبایی همچون اندره ژید- برتراند راسل و.. تبادل نظر داشته اند. ایشان از سوی جامعه علمی و جهانی به عنوان (مرد اول علمی جهان) بر گزیده شدند و در کنگره شصت سال فیزیک در ایران ملقب به پدر فیزیک ایران گردیدند.

ذرات بینهایت

در زمینه تحقیق علمی 25 مقاله رساله و کتاب از استاد به چاپ رسیده است.تئوری بینهایت بودن ذرات ایشان در میان دانشمندان و فیزیکدانان جهان شناخته شده است.
نشان (اومیسیه دو لالژیون دونور) و همچنین نشان (کو ماندور دو لایژیون دو نور) بزرگترین نشان های کشور فرانسه به ایشان اهدا گردید.

تاریخچه علم فیزیک

فیزیکدانان تا اغاز سده نونزدهم میلادی( حدود سال 1280 هجری شمسی) توانسته بودند برای بسیاری از پدیده های طبیعی توجیه های قانع کنندهای ارائه کنند. مجموعه قانون ها و نظریه های تدوین شده تا ان زمان را فیزیک کلاسیک می نامند. این مجموعه از قانونها امروزه هم در بسیاری از مورد ها برای توجیه پدیده های طبیعی مورد استفاده قرارمی گیرد.
در سالهای پایانی سده نوزدهم میلادی پدیده هایی مشاهده شدند که با فیزیک کلاسیک قابل تو جیه نبو دند. فیزیکدانان در دهه های نخست سده بیستم میلادی این پدیده ها را به کمک نظریه های جدیدی که در فیزیک کلاسیک مطرح نبو دند تو جیه کردند. مجموعه این نظریه ها و قانون های مربوط به انها امروزه به نام فیزیک جدید یا نوین شناخته می شود.

نسبیت و کوانتوم
مبنا و شالوده فیزیک جدید را نسبیت و کوانتوم تشکیل می دهد. نسبیت مربوط به مطالعه پدیده ها در سرعت های بسیار بالا و نزدیک به سرعت نور است. و رفتار مواد را از دید ماکروسکوپیک مد نظر قرار می دهد.
کوانتوم نیز به بررسی پدیده ها در مقیاسهای کوچک و ذرات بنیادین و یا به عبارتی رفتار میکروسکوپیکی مواد می پردازد.

نظریه های نسبیت و کوانتوم هر دو طی بیست و پنج سال اول سده بیستم مطرح شدند. پایه گذار نظریه نسبیت البرت انیشتین بودو نظریه کوانتومی بودن ذرات نتیجه پژوهش های بسیاری از جمله انیشتین- بور –شروندینگر- هایز بنرگ- دیراک- پائولی و... بوده است.

نظریه کوانتومی

در سال 1279 هجری شمسی پنج سال قبل از ان که انیشتین نظریه نسبیت را پیشنهاد کند ماکس پلانک نظریه ای ارائه داد که در ان زمان تاثیر شگرف ان بر تحول های بعدی چندان اشکار نبود. نظریه کوانتومی که توسط پلانک ارائه شد نخستین نظریه از زنجیره نظریه هایست که مبانی مکانیک کوانتومی را تشتیل می دهد.پلانک این نظریه را برای تو جیه نتیجه های تجربی مر بوط به تابش مو ج های الکترو مغناطیسی از اجسام ارائه داد. شایان ذکر است که این تجربه ها قابل توجیه با قانونهای فیزیک کلاسیک نبود.

الکترومغناطیس- سابقه تاریخی

مبدا علم الکتریسیته به مشاهده معروف THALES OF MILETUS در 600 سال قبل از میلاد بر می گردد. در ازمایشگاه تالس متوجه شد که یک تکه کهربای مالش داده شده خرده های کاه را می رباید. از طرف دیگرمبدا علم مظناطیس به مشاهده این واقعیت برمی گردد که بعضی سنگها ( یعنی سنگهای ماگنیتیت) به طور طبیعی اهن را جذب می کنند. در سال 1820 هانس کریسنیان اورستد مشاهده کرد که جریان الکتریکی در یک سیستم می تواند عقربه قطب نمای مغناطیس را تحت تاثیر قرار دهد.
بدین ترتیب الکترومغناطیس به عنوان یک علم مطرح شد. این علم جدید توسط بسیاری از پژوهندگان که مهمترین انان مایکل فاراده بود تکامل یافت. جیمز کلرک مالسول قوانین الکترومغناطیس را به شکلی که امروزه می شناسیم دراورد. معادلات ماکسول همان نقشی را در الکترومغناطیس دارند که قوانین حرکت و گرانش نیوتن در مکانیک دارا هستند.

اپتیک

ماکسول چنین نتیجه گرفت که ماهیت نور الکترومغناطیس است و سرعت ان را می توان با اندازگیریهای صرفا الکتریکی و مغناطیسی کرد. از این رو اپتیک با الکتریسیته و مغناطیس رابطه نزدیکی پیدا کرد.

داستان ادامه دارد؟!!

تکامل الکترو مغناطیس کلاسیک به ماکسول ختم نشد. فیزیکدانان انگلیسی لایور هوی ساید و به ویژه فی زیکدانان هلندی در پالایش نظریه ماکسول مشارکت اساسی داشتند.

حسادت!

هاینریش هرتز بیست سال و اندی پس از انکه نظریه خود را مطرح کرد گام موثری به جلو برداشت. وی امواج ماکسولی الکترو مغناطیسیی را از نوعی که اکنون امواج کوتاه رادیویی می نامیم در ازمایشگاه تولید کرد. مارکونی و دیگران کاربرد علمی امواج الکترو مغناطیسی ماکسول و هرتز را مورد استفاده قرار دادند.

دسترنج!!

امروزه علم الکترو مغناطیس از دو جهت مورد توجه است. یکی در سطح کاربردهای مهندسی که در ان معادلات ماکسول در حل تعداد زیادی از مسائل علمی مورد استفاده قرار می گیردو در سطح مبانی نظری. در این سطح چنان تلاش مداومی برای گسترش دامنه ان وجود دارد که الکترومغناطیس حالت ویژگی ازیک نظر عمومی تر جلوه می کند. این نظریه عمومی تر نظریه های گرانش و فیزیک کوانتومی را نیز در بر می گیرد.


<      1   2   3      >

ليست كل يادداشت هاي اين وبلاگ

موسیقی
[عناوین آرشیوشده]